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ABSORPTION OF SOUND NEAR A SEMIINFINITE RIGID PLANE 

V. A. Murga UDC 534.2:532 

i. Research was conducted into the absorption of sound in a viscous heat-conducting 
compressible fluid (or gas) in the familiar work by Konstantinov [i] for the reflection 
of a plane sound wave from an infinite rigid plane. The absorption factor in this case, 
defined as the ratio of the absorbed energy to the incident energy, given small angles of 
incidence (~ ~ i), is equal to 

d = 4M[(I + 2M + 2M:), (1 .1)  

where M = ko(v/2~)i/2/~; k0 = ~/c (~ is the angular frequency of the oscillations and c 
is the speed of sound); v is the coefficient of the kinematic viscosity of the fluid (for 
the sake of brevity, here and below we will assume that the dissipation of the sonic energy 
is governed exclusively by the viscosity of the medium); moreover, it is assumed that k0(v/ 
m)i/2 ~ I. Of particular interest is the behavior of the coefficient d in the angles-of- 
incidence region ~ ~ k0(~/~)~/2: it changes sharply with respect to the angle and when 

= k0(v/~)l/2 attains a maximum equal to 2(V~--- i), and is it not dependent on the prop- 
erties of the fluid and on the frequency of oscillation (the Konstantinov effect [2]). 

Let us note that for a real case of a finite plate in precisely this area of angles 
of incidence formula (i.i) accurately reflects the process which takes place at such a great 
distance from the edge of the plate, where the incident wave itself is virtually attenuated 
owing to absorption in free space. Indeed, we know from the theory of diffraction that 
a reflected wave near the surface of a plate may be regarded as plane (as was assumed in 
[I]) at a distance x from the edge of the plate such that the condition ~ik0x m i is satis- 
fied. The coefficient of sound absorption in free space, i.e., 7 = 2k03~/m [3], so that 
if ~ ~ k0(~/~) I/2, the indicated condition assumes the form of 7x ~ i, which indicates 
the strong attenuation of the incident wave at a distance x along the plate. 

In order to investigate the sound absorption near a finite plate in the case of any 
small angle of incidence and at such distances from the edge of the plate that the incident 
wave has not yet been attenuated, it is necessary to drop the assumption that the "reflected" 
field is a plane wave. This study has been undertaken in the present paper for the case 
of a semiinfinite plane. It has been demonstrated that the effect of viscosity and the con- 
dition of adhesion at the plane leads to a unique "waveguide" effect which consists of the 
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fact that a portion of the sonic energy is propagated along the plane, not moving away from 
it, in the form of a nonuniform wave; this phenomenon has no analog in the acoustics of 
an ideal fluid. 

2. Let a plane monochromatic sound wave impinge on a semiinfinite rigid plane with 
an incident angle a (the two-dimensional problem). The position of the coordinate axes 
and the direction of the incident wave (indicated by the arrow) are shown in Fig. i. The 
x axis is directed along the plane from the leading edge. The velocity of the fluid particles 
(with unit amplitude) in the incident wave is given by the expression 

v o ~ ,kk-~-- ei~(xcoso~--ysincO (2 .1 )  

[k is the wave vector, k = k0 + iy, the time factor exp (-i~t) has been dropped throughout]. 
In order to find the "reflected" field, we will resort to the Kirchhoff theory [4], accord- 
ing to which the field of the velocity vector v for the particles of a viscous compressible 
fluid executing small oscillations is described by the equations 

V2v'+k2v ' = 0 ,  V X  v ' = O ,  V2v"+ i----~ V . v " =  O, ( 2 . 2 )  

where v = v' + v". In all the following we will examine the field in the region y > O. 
Following the Fourier method we will look for the solution for the longitudinal u' (along 
the x axis) and the transverse v' components of the vector~v ' in the form 

u'= S A• d• v'= ~ A• d•215 
- - o o  - - o o  

(2.3) 

where A< is an arbitrary function of <; ~ = (k 2 - K2)i/2; the imaginary part of D must be 
positive, in order for expression (2.3) to have any physical sense as y ~ ~. It is obvious 
that formulas (2.3) satisfy the first pair of equations in (2.2). Analogously, for the 
longitudinal and transverse components of the vector v" we have 

u"= J B•215 v~=--  •215 ( 2 . 4 )  

to = (i~/v - ~2)I/2 (the imaginary part is positive), B< is an arbitrary function of K]. 
Expressions (2.4) satisfy the second pair of equations in (2.2), and u" and v" differ marked- 
ly from zero only in the area of a boundary layer having a thickness of ~(v/~) I/2. 

The boundary conditions for y = 0 will be formulated as follows. For x > 0 the follow- 
ing condition of adhesion must be satisfied: 

u' + ~ "  +Uo =O,v'  + v "  +Vo = 0  

[u 0 and v 0 are the longitudinal and transverse components of the vector v0 in (2.1)]. The 
velocity of the fluid particles on the ray y = 0, x < 0 is unknown. We might assume in 
an ideal fluid that the reflected field is not present in this case. The solution will 
then be valid near the boundaries separating total shadow from the shadow of the reflected 
wave (as well as under the condition k0x >> i) [5]; in particular, with small angles of 
incidence the solution is valid for the region in which the condition y/x ~ 1 is satisfied. 
Total validation of the asserted contention is obtained through solution of the problem 
of the diffraction of an electromagnetic wave at a conducting plane (Sommerfeld [6]). 

In the case of a viscous fluid the assumption to the effect that there is no reflected 
wave on this ray, strictly speaking, is incorrect; however, it might be assumed to be valid 
in first approximation, and this follows out of the following considerations. From the 
standpoint of physical considerations it is clear that the effect of viscosity in the region 
x < 0 makes itself apparent only in the immediate vicinity of the leading edge, in a "vis- 
cous" region of dimensions ~(v/~)i/2; in the remaining area the field, in first approxima- 
tion, is the same as in the case of an ideal fluid. This is one of the fundamental positions 
on which boundary-layer theory is based. Therefore, if we adopt u' + u" = 0, v' + v" = 0 
as the boundary conditions on the ray, then in view of the above-stated assertions they are 
invalid for the viscous region, where u" and v" are noticeably different from zero. Since 
the dimensions of the viscous regions are significantly small in comparison to the other 
characteristic dimensions of the problem, the length of the sound wave [the ratio of these 
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quantities to the parameter e = k0(9/m) I/2 << i], it is to be expected, in first approxima- 
tion, that the viscous region on the ray will have virtually no effect on the solution of 
the problem, this influence being noticeable only in the subsequent approximations (which 
are not dealt with in this study). The foregoing follows out of the general positions of 
the theory of perturbations. Thus, the first approximation must represent the first term 
in the expansion of the exact solution of the problem in series over powers of the small 
parameter e. The subsequent term of the expansion is proportional to E in the first degree. 

The cited validation of the assumed boundary conditions on the ray y = 0, x < 0, cannot, 
of course, be regarded as rigorous; however, from the physical standpoint they are rather 
obvious. 

Using (2.3) and (2.4), as well as the expansion of the following functions into the 
Fourier integral, and namely 

/ ( x ) =  v ~  k , = k ~ e ~  
O, x < O ~  k 2.~ -~ k c o s a - - x  ' 

by means of the boundary conditions for y = 0 for A K and B~ we have 

i COS + n 

,~lz ~ ----- 2n (k cos or -- • ' 

i sin D I 

/-tziy./X - -  •215 ---- 2~ (k cos 0r - -  ~ ) "  

From this, finding A N and using (2.3), after simplifications associated with the conditions 
<< 1 and k0(~/~) I/2 ~ i, we find that 

oo 

u' = i y (~=_ ~2 V~7~) e i<~* + ~y~ (2.5) 

(cos ~ = I - ~2/2). Expression (2.5) describes the reflected field (the longitudinal com- 
ponent of the fluid-particle velocity vector) in the potential region, i.e., outside of 
the boundary layer (since here u" = 0). We will drop the primes in the following. 

The imaginary part of ~ = (k 2 - <2)i/2 is positive for all (real) ~, provided we select 
that branch of the two-valued function of p(K) (in the plane of the complex variable K) 
which exhibits a positive imaginary part on the segment of the real axis -~/c ~ K ~ m/c, 
and if we make sections at the branching points K = k and K = -k parallel to the imaginary 
axis, both above and below. The selected ~ branch corresponds to the upper sheet of a Riemann 

surface. 

In order to calculate the integral in (2.5) we will deform the original contour of 
integration in the plane of the complex variable K, drawing it upward to infinity. It can 
be demonstrated that the integral vanishes along the infinitely elongated portion of the 
contour, and it remains only to perform the integration along the edges of the section (Fig. 
2). Moreover, with such deformation the contour intersects the pole of the function in 

| 
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(2.5) beneath the integral sign at the point < = k cos ~, the contribution to the solution 
from the remainder at this pole represented by the following: 

]/7 b -- i e~(~cos ~ + ~) ( 2.6 ) 
u ~ = ] / 7 ~ + ~  

[b = a(~/ko2v)~/2] .  The d e r i v e d  e x p r e s s i o n  d e s c r i b e s  a p l ane  uni form wave r e f l e c t e d  from 
th e  p l a t e  in accordance  wi th  the  laws of  geomet r i c  a c o u s t i c s  ( s e e  [ 1 ] ) .  

The f u n c t i o n  in ( 2 . 5 )  benea th  the  i n t e g r a l  s ign  has y e t  ano the r  p o l e  ( in  the  upper  
h a l f  p l ane )  a t  t he  p o i n t  

• = k + iko~2~ ( 2 . 7 )  

with an accuracy to the drop small quantities of higher order (relative to the parameter 
k02v/m). It is significant that the second term in the right-hand side of (2.7) is a quan- 
tity of the same order of magnitude as the coefficient of absorption 7, representing the 
imaginary portion of the wave number k. This pole is situated on the section line (Fig. 
2). In view of the choice of the branch for the function D(~) the denominator in the ex- 
pression (2.5) beneath the integral sign vanishes on approach to the pole on the right-hand 
side of the section; thus, the pole is positioned in the right-hand upper (or left lower, 
which is the same) edge of the section. The integration contour (over the upper sheet of 
the Riemann surface) is illustrated in Fig. 2. The small semicircle makes it possible to 
bypass the singularity on the right-hand side of the section edge. Integration over the 
small semicircle (as its radius tends to zero) yields 

I-~- Vib 
(~o = (k2 _ • _ ko~(~i2co)~/~(~ _ 1)).  

( 2 . 8 )  

Expression (2.8) describes a plane nonuniform wave propagated along the plate, with an ampli- 
tude dependent on s angle of the incident wave, with an absorption factor equal to imN 0 = 

+ k03~/2m = 7k039/6m [see (2.7)]. If ~ m k0(v/w) !/2, then b m 1 and the amplitude of 
the wave (2.8) is small; if ~ ~ k0(v/~) 1/2, then the amplitude is equal to unity in terms 
of order of magnitude (when e = 0 the amplitude in terms of accuracy is equal to unity). 
In the case of an ideal fluid (~ = 0, b = ~), u 2 = 0. 

The existence of the wave in (2.8) is associated with the influence exerted by the 
boundary layer on the potential region. This effect, it turns out, leads to a situation 
in which a region of width ~(w/v)112/ko2 adjoining the plane exhibits, in some measure, 
the property of a waveguide. Namely, if the source of the sound is located in this region~ 
then a portion of the sound energy emitted by that source in the incident angle range 0 

~ k0(v/m) I/2 is propagated along the plane, not moving away from the plane, in the form 
of the wave in (2.8). If a ~ k0(~/~) 1/2, then the incident wave will not enter this inter- 
val of angles and the wave in (2.8) is formed as a consequence of the energy emitted by 
the leading edge of the plate (within this interval of angles). With ~ ~ k0(v/~) I/2 it 
is the incident wave itself that participates in the formation of the wave, which results 
in a pronounced increase in the amplitude of the wave in (2.8). 

For purposes of calculating the integral in (2.5) over the remaining portion of the 
deformed contour, in addition to the conditions ~ ~ 1 and k0(v/w) I/2 ~ 1 we will use the 
conditions k0x ~ 1 and k0y < (k0x) I/2. The latter makes it possible to replace exp(i~y) 
by the expression 1 + i~y; a slight addition to unity is retained to refine the dependence 
of the solution on y. After transformation the integral over both edges of the section 
is written in the form 

2i ( l - -  y~b)ei(hx+~0 y) S ~Ze-a=%'z d~ = ~ -  (~, ~ - ~ )  ' 
0 

( 2 . 9 )  

where�9 2 = k03vx/2m, ~2 = 2s~/k03~, < = k + is (s is real). The integral in (2.9) is under- 
stood in the sense of its principal significance, since the integration segment within the 
infinitely small semicircle has been eliminated, where that semicircle encompasses thepole 
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(at the point $ = i). Calculation of this integral leads to two terms; the first term 

2b . 2 f o ( 2 . 10 )  
U ~ = - -  ] / . ~ ( l + . V T b )  e~( k x - w  +~o  y)  e~ t 'd t  

W 

[w = ab = a ( k 0 x / 2 )  I /2 ]  r e p r e s e n t s  d i f f r a c t i o n  d i s t o r t i o n .  In t he  case  of  an i d e a l  f l u i d  
(v = g0. = 0, b = ~) Eq. ( 2 . 10 )  changes i n t o  t h e  e x p r e s s i o n  

U 3 = - -  ~ 

oo 

2 e i(hx-w2) f e  ~t2 dt, (2.11) 

which coincides with the above-cited Sommerfeld solution [6] (for a ~ i) when the magnetic- 
field strength vector is polarized parallel to the leading edge of the plate; it is precise- 
ly in this case that we achieve total analogy between diffraction of the electromagnetic 
wave at the conducting plane and the sound wave (more exactly, the longitudinal components 
of fluid-particle velocity) at the rigid plane in an ideal fluid. If a ~ k0(v/m) z/2 (b 
i), then (2.10) differs weakly from (2.11); however, when a ~ k0(~/m) I/2 the difference 
becomes radical. 

The second term has the form 

2i e~(%~+%Y) i e*~ dt, (2 12 ) u4 = 0 + 1/Tb) 
0 

and in the case of an ideal fluid it vanishes. At distances, not overly large, from the 
edge, when a 2 = k03~x/2w ~ 1 (here, of course, k0x m i), u 4 is small; when a ~ i, then 
u4 ~ I, and in this event the attenuation of the incident wave makes itself felt, owing 
to absorption in space. When a ~ l (the incident wave is virtually attenuated) 

i e~(h~+~). 
u4 V a(t + ]/7 b) 

In t he  l a t t e r  case  e x p r e s s i o n s  ( 2 . 8 ) ,  ( 2 . 1 0 ) ,  and (2 .12 )  a r e  smal l  in  comparison to  ( 2 . 5 )  
and, t h u s ,  t he  l a t t e r  becomes s u i t a b l e  f o r  a l l  ang l e s  o f  i n c i d e n c e ,  i n c l u d i n g  t he  case  in  
which a = O. 

3. We w i l l  c a l c u l a t e  t h e  magni tude  of  t he  sound ene rgy  absorbed  in t he  boundary l a y e r  
by means o f  t h e  theorem r e l a t e d  t o  ene rgy  d i s s i p a t i o n  in  f l u i d s  [3 ] ,  a c c o r d i n g  to  which 
t he  ene rgy  d i s s i p a t e d  in  t he  l a y e r  ( pe r  u n i t  t ime and u n i t  a r ea  of  t he  p l a t e )  

6 

k au] 
O 

where q = vp; p i s  t he  d e n s i t y  o f  t h e  f l u i d ;  u i s  t he  l o n g i t u d i n a l  component ( r e a l )  of  t he  
v e l o c i t y  in  t h e  boundary l a y e r ;  6 i s  t he  t h i c k n e s s  o f  t he  boundary l a y e r .  S ince  the  complex 
ampl i tude  in  t he  boundary l a y e r  i s  e x p r e s s e d  as u = Ue(1 - e x p  [ - ( i m / 9 ) Z / 2 y ] )  (u e i s  t he  
complex l o n g i t u d i n a l  v e l o c i t y  a t  t he  e x t e r n a l  edge of  t he  boundary l a y e r ) ,  t hen  Eq. ( 3 . 1 ) ,  
ave raged  over  t ime ,  w i l l  y i e l d  

= ue I e ( 3 . 2 )  

The quantity u e is found to be the sum of the terms in (2.6), (2.8), (2.10), and (2.12), 
and also of u0 [the incident wave in (2.1)] for y = 0. If a ~ i (the case of greatest 
interest from the standpoint of application, when attenuation in the incident wave can be 
neglected), in which case 

t i e~ t~ dt)~ u e = 2 e  i%x i - - ] / ~  w 
(3.3) 
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It is remark@ble that although the above-enumerated terms change on the basis of the angle 
~ k0(v/w) I/2 in the region on an individual basis (with the exception of the incident 

wave) as a consequence of their dependence on viscosity, the resulting velocity (3.3) is 
independent of ~ (for ~ ~ i) and of the viscosity, i.e., u e behaves precisely as an ideal 
fluid, which is quite natural, although not obvious from the start. However, this is not 
the result which we find when the values of the parameter~a are not overly small. 

The coefficient d in the boundary layer is obtained through division of E in (3.2) 
by the time-averaged magnitude of the energy flux in the incident wave, referred to a unit 
of plate area, i.e., by pcI~012~/2; thus, we have 

d=  c2] , (3.4) 

s i n c e  I!Val =w 1. In  p a r t i c u l a r ,  on s i m u l t a n e o u s  s a t i s f a c t i o n  o f  t h e  c o n d z t z o n s  . . . .  .a << ill" a 
k0(,lw) i12, =ab ~ i it follows from (3.3) that fuel = 2, and then d = 2v~'(v~Ic 2) 2/~ = 
4M, which coincides with (i.i), since here M << i. In the other particular case, when 
a ~ 1 and ~ ~ k0(v/~) z/2, w < i, and from (3.3) it turns out that fUel = I, so that 

d = (v~Ic2)llU~ V~  = M. (3.5) 

This expression is valid for all ~ (in the indicated region of angles), including the case 
in which ~ = 0. The infinite value of d in (3.5) for ~ = 0 does not indicate "infinitely 
large" absorption, but is a consequence of the adopted definition of d; the "dimensional" 
absorption from (3.2) is totally independent of ~. Thus, the result obtained in (3.5), 
as must be the case, differs from the results given in (i.i), which in view of the above 
is inapplicable to the region of small angles of incidence (~ ~ k 0 ~  for such distances 
x from the edge of the plate at which the incident wave has not yet become attenuated owing 
to absorption in space (k0x ~ i, but k03vx/w < I). 
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